Chromosome Organization

Recent studies suggest that genes are spatially organized; where they are and how they are organized are important for their transcription activities. To test this hypothesis, we are developing new imaging techniques to visualize chromosomal DNA conformation and transcription activity in individual cells. The first set of DNA localization markers we developed allowed us to probe the dynamics of transcription factor-mediated DNA looping in live E. coli cells, and relate to transcription activity of the gene it controls. We are currently developing new superresolution methods to probe both genome organization and transcription activity in both bacterial and eukaryotic stem cells. We expect this line of work to provide new insight into the spatial regulation of transcription.

Publications

Weng X, Bohrer CH, Bettridge K, Lagda AC, Cagliero C, Jin DJ, Xiao J. Spatial organization of RNA polymerase and its relationship with transcription in Escherichia coli. Proc Natl Acad Sci U S A. 2019 Oct 1;116(40):20115-20123. doi: 10.1073/pnas.1903968116. Epub 2019 Sep 16. PubMed PMID: 31527272; PubMed Central PMCID: PMC6778201.

Weng X, Xiao J. Spatial organization of transcription in bacterial cells. Trends Genet. 2014 Jul;30(7):287-97. doi: 10.1016/j.tig.2014.04.008. Epub 2014 May 23.

Hensel Z, Weng X, Lagda AC, Xiao J. Transcription-factor-mediated DNA looping probed by high-resolution, single-molecule imaging in live E. coli cells. PLoS Biol. 2013;11(6):e1001591